GOOGLE CREA EL PRIMER PROGRAMA DE INTELIGENCIA ARTIFICIAL CAPAZ DE APRENDER POR SI MISMO

Esta es una noticia de la que no se ha hablado demasiado, a pesar de ser de una importancia capital en el mundo de la Ciencia y la Tecnología. Los

¿Los Incas conocían una técnica secreta para “ablandar” las piedras?
Director de la NASA: «Existió vida en Marte y quizás exista también ahora»
Un conflicto entre dos países ha retrasado seis minutos los relojes europeos sin que te des cuenta
Esta es una noticia de la que no se ha hablado demasiado, a pesar de ser de una importancia capital en el mundo de la Ciencia y la Tecnología. Los científicos ya han creado el primer programa de ordenador capaz de aprender una amplia variedad de tareas de forma independiente, en el que es considerado como el primer paso significativo hacia la verdadera Inteligencia Artificial. El programa, llamado AGENT, aprendió a jugar a 49 antiguos juegos diferentes de ordenador, desarrollando sus propias estrategias para ganar. En el futuro, el mismo enfoque podría utilizarse para crear coches autoconducibles, asistentes personales para teléfonos inteligentes o llevar a cabo investigaciones científicas en campos diferentes, que abarquen desde el cambio climático a la cosmología. deepmind-ai-logo-100227430-large La investigación fue llevada a cabo por DeepMind, la compañía británica adquirida por Google el año pasado por 548 millones de euros (400 millones de libras), cuyo objetivo declarado es crear “máquinas inteligentes”.

Demis Hassabis Demis Hassabis

Demis Hassabis, fundador de la compañía, ha declarado: “Este es el primer peldaño importante de esa escalera que nos conduce a un sistema de aprendizaje general que realmente funcione. El programa es capaz de adoptar tareas que incluso los seres humanos encuentran difíciles. Es el primer paso de este bebé hacia ese objetivo grandioso y tan importante” El trabajo es visto como un salto de gigante respecto a los intentos anteriores de crear Inteligencia Artificial, como fueron el programa Deep Blue, que venció al famoso jugador de ajedrez Gary Kasparov en 1997 o el programa Watson de IBM, que ganó el concurso de televisión Jeopardy! en 2011.

Garry Kasparov contra Deep Blue Garry Kasparov contra Deep Blue

En estos dos casos anteriormente mencionados, las computadoras fueron pre-programadas con las reglas del juego y las estrategias específicas para ganarlo y superaron al rendimiento humano gracias a una potencia de cálculo enorme. “En el caso de Deep Blue, fue el equipo de programadores y grandes maestros los que destilaron los conocimientos necesarios que después se introdujeron en el programa”, dice Hassabis. “En este caso, sin embargo, hemos construido algoritmos que aprenden a partir de cero”. Al programa AGENT, simplemente se le da una entrada de información en bruto, formada por los píxeles que componen la pantalla de juegos de Atari y provista de un marcador con la puntuación. Cuando AGENT empieza a jugar, simplemente observa los frames del juego y va pulsando los botones al azar, para ver qué pasa. “Es un poco como un bebé que abre los ojos y ve el mundo por primera vez”, afirma Hassabis. atari2 AGENT utiliza un método de aprendizaje llamado “aprendizaje profundo” para convertir la entrada de informaciones visuales básicas en conceptos significativos, reproduciendo la forma en que el cerebro humano procesa la información sensorial en bruto y la transforma en una rica comprensión del mundo. AGENT está programado para trabajar en lo que es significativo a través de un “aprendizaje por refuerzo”, la noción básica del cual es que interpreta que sumar puntos es algo bueno y perderlos es algo malo.

Tim Behrens Tim Behrens

Tim Behrens, profesor de neurociencia cognitiva del University College de Londres, ha declarado que: “Lo que han hecho es realmente impresionante, no hay duda. Han hecho aprender a AGENT a través de conceptos basados simplemente en la recompensa y el castigo. Nadie había hecho algo así antes” En los videos proporcionados por Deep Mind, podemos ver a AGENT empezando por hacer movimientos al azar y sin éxito al principio, pero después de 600 centenares de rondas de entrenamiento (dos semanas de tiempo de computadora), el programa ya ha descubierto como funcionan los juegos.

from otra realidad 

Content Protection by DMCA.com

COMMENTS